HUSH® Trim

HUSH® Trim is an innovative concept in control valve trims designed by Copes-Vulcan for high pressure drop liquid, gas and steam applications. Cavitation, excessive leakage, hazardous noise, vibration and mechanical failures which cause high maintenance and excessive downtime can be eliminated with HUSH Trim.

Principle of Operation

HUSH Trim is a cage guided type and provides excellent control for compressible and non-compressible fluid applications by directing the flow through a series of staged pressure drops. This unique trim eliminates cavitation in liquid flow and provides multiple pressure breakdown for noise attenuation in critical pressure drop compressible fluid applications.

The trim assembly consists of a number of nested concentric cylinders, each having a series of radially drilled holes. The orifice areas are developed by arranging the cylinders, one within the other, in an offset manner so that a series of restriction (pinch areas) and expansion areas occur in series. The total pressure is thus reduced in stages.

The timed series of holes form a multiple helix pattern. Opening of the plug affects several holes at any one time eliminating the digital effect and providing smooth control and excellent rangeability. Fluid discharges from the trim in a parabolic pattern, creating a swirl around the cylinder assembly. Thus, any possible damage from direct impingement of the fluid on the valve body walls is eliminated.
Typical Applications

• Boiler feed pump recirculation — on/off or modulating and with zero leakage.
• Boiler feedwater start-up.
• Re-heat and super heat spray control.
• High pressure liquid, steam and gas applications.
• Aerated liquid applications.
• Condensate systems.
• Turbine Bypass to atmosphere or condenser.
• All fluids where velocity control is required to minimize vibration and noise.
For Liquid Service
One of the major causes of control valve failure, when using conventional designs, is the severe damage inflicted on trim parts and valve body by cavitation.

Cavitation is the result of the collapse of vapor bubbles close to metal surfaces such as the trim or valve body. As the liquid enters the trim, the velocity increases and pressure decreases. If there is sufficient heat in the liquid and if the pressure decreases to the vapor pressure, bubbles form. Downstream, pressure starts to recover and these randomly formed bubbles will collapse, generally close to the trim or walls of the valve body. Very high local stresses are generated. In addition, the random position and frequency of these implosions can generate mechanical vibration, valve and pipe line instability and noise.

Aerated liquids are particularly troublesome especially if the pressure drop is significantly high. Identical problems of cavitation will occur and an added problem — corrosion. Very often the outlet of the valve body and downstream piping will suffer corrosion damage.

HUSH Trim provides a solution to these problems. This unique design controls flow and velocity of the liquid through many orifice openings and stages of pressure drop. Flow enters the valve from under the main seat, which is from inside the cylinder assembly and moves toward the outside. Multiple helical patterns of holes in each cylinder provide the basis of the design. The number of cylinders control the number of stages of pressure drop. Through a computer program, each application is tailor-made to fit the situation.

The vena-contracta for each stage of pressure drop is the pinch area formed between the inter-section of each cylinder and associated drilled holes. Copes-Vulcan's engineering experience has shown that the last few stages of pressure drop are the most critical, especially if the final pressure is close to vapor pressure. The largest share of the overall drop is taken at the first stage. Each subsequent stage takes a proportionately smaller drop until the liquid pressure eases into its final operating condition.

Flow from inside out is very important as any potential problem of cavitation or aeration is directed away from the valve seat. The flow pattern through each series of holes forms a parabolic curvature as liquid discharges from the cylinder assembly. Since there are many holes along the parabolic flow path, no direct impingement of harsh liquid is directed onto the walls of the valve body. The HUSH cylinder assembly therefore acts like a fine shower spray.

Conventional trim allows damaging cavitation to occur when the pressure drops below the vapor pressure of the liquid. HUSH Trim is designed so that the pressure at the last stage of drop is not at or below the vapor pressure. Cavitation therefore cannot occur.
For Gas or Steam Applications

HUSH Trim was developed not only to prevent cavitation but also to attenuate noise generated by high pressure drop gas and steam applications. Conventional valves usually have one vena-contracta and if critical pressure drop is required, sonic velocity is generated. Turbulence and pressure changes in the downstream piping can become forcing functions and if the natural frequency of the system is close to the forcing function, resonance can occur. Not only will the system be noisy, but there is a risk that stresses produced by resonance could cause fatigue.

HUSH Trim controls the gas/steam velocity to sub-sonic values through each stage of drop. As in liquid applications, flow enters the trim from under the seats and into the cylinder assembly. This unique trim is designed so that gas/steam will not reach sonic velocity at any stage. Expansion of the gas/steam is allowed to occur immediately after the major restriction in each stage. Trim and valve size will depend on the number of stages of pressure drop and the size and number of holes required to pass the flow. In addition, by using a large number of small restrictions, the energy is broken, providing for a quiet valve. Noise level is generally maintained at 85dBA or less.

Advantages

• Resolves existing problems for both compressible and noncompressible fluid flow applications.
• Prevents cavitation from occurring.
• Prevents aerated liquids from corroding/eroding trim and valve parts.
• Provides zero leakage through soft seats (Max. 500°F, 260°C) for applications requiring tight shutoff.
• Prevents mechanical vibration and instability in all three planes “X-Y-Z”.
• Minimizes plugging of trim by foreign matter in pipe line.
• Prevents sonic velocity from occurring within the valve.
• Generally limits noise to 85dBA or less.
• Provides high turn down — up to 75:1.
• Provides high reliability and maintainability
In order to determine the number of staged pressure drops for a given application, the below listed specifications are required for determining the number of cylinders, port diameters, trim size, Cv and valve size.

<table>
<thead>
<tr>
<th>Specifications*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rangeability</td>
</tr>
<tr>
<td>Flow Direction</td>
</tr>
<tr>
<td>Construction</td>
</tr>
<tr>
<td>Cage, Seat and Plug Material</td>
</tr>
<tr>
<td>Seat Leakage</td>
</tr>
<tr>
<td>Maximum Fluid Temperature</td>
</tr>
<tr>
<td>Minimum Fluid Temperature</td>
</tr>
</tbody>
</table>

For Steam or Gas Applications
1. Allowable noise limit
2. Steam or gas flow rate
3. Pressure drop @ min. & max. flow
4. Outlet pressure @ min. & max. flow
5. Shutoff pressure
6. Temperature

For Fluid Applications
1. Valve pressure drop @ min. & max. flow
2. Shutoff pressure
3. Outlet pressure @ min. & max. flow
4. Flow rate (min. & max.)
5. Temperature (min. & max.)
6. Leakage rate

*For estimating purposes only-certified specification furnished per individual job

Specifications*

<table>
<thead>
<tr>
<th>Liquid Trim Sizes</th>
<th>Maximum # of Stages</th>
<th>Steam & Gas Trim Sizes</th>
<th>Maximum # of Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2” 51 mm</td>
<td>10</td>
<td>2” 51 mm</td>
<td>6</td>
</tr>
<tr>
<td>3” 76 mm</td>
<td>10</td>
<td>3” 76 mm</td>
<td>7</td>
</tr>
<tr>
<td>4” 102 mm</td>
<td>10</td>
<td>4” 102 mm</td>
<td>7</td>
</tr>
<tr>
<td>5” 127 mm</td>
<td>10</td>
<td>5” 127 mm</td>
<td>8</td>
</tr>
<tr>
<td>5” 127 mm</td>
<td>10</td>
<td>5” 127 mm</td>
<td>9</td>
</tr>
<tr>
<td>8” 203 mm</td>
<td>10</td>
<td>8” 203 mm</td>
<td>9</td>
</tr>
<tr>
<td>10” 254 mm</td>
<td>10</td>
<td>10” 254 mm</td>
<td>9</td>
</tr>
<tr>
<td>12” 305 mm</td>
<td>10</td>
<td>12” 305 mm</td>
<td>9</td>
</tr>
<tr>
<td>14” 356 mm</td>
<td>10</td>
<td>14” 356 mm</td>
<td>10</td>
</tr>
<tr>
<td>16” 406 mm</td>
<td>10</td>
<td>16” 406 mm</td>
<td>10</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>20” 508 mm</td>
<td>10</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>24” 610 mm</td>
<td>10</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>28” 711 mm</td>
<td>10</td>
</tr>
</tbody>
</table>

The number of holes and their pinch areas to each cylinder or stage will vary for each size trim and application. A detailed computer program for compressible and non compressible fluids is utilized in obtaining data for optimum sizing of HUSH Trim.
Typical Applications for HUSH® Trim Trim

The following lists are representative of the type of application where HUSH® Trim can be used to ensure long trouble-free operation. This list is by no means exhaustive.

POWER/Auxiliary Power Units
- Boiler Feed Control
- Boiler Feed Pump Minimum Flow (Bypass)
- Inter Stage Attemperator Water Control
- Heater Drain Valves
- Boiler Drum Level Control
- Soot Blower Header Control
- Turbine Bypass
- Start-Up Steam Vent
- Spray Water Control
- Deaerator Level Control
- Condenser Steam Dump
- Sampling Systems

Gas Transportation/Storage
- Gas Injection/Production
- Active/Monitor Valve Systems
- Compressor Antisurge
- Gas to Flare
- Fuel Gas Regulation
- Surge Relief
- Silencers

LNG
- Compressor Antisurge
- Acid Gas Separator
- Pump Recirculation Valves
- Hot Gas Bypass Valves
- Joule Thompson Valves
- Gas to Flare
- Emergency Depressurising Valves

Petrochemical
- Compressor Antisurge
- Feed Gas Regulation
- Expander Bypass
- Process Gas Depressurising
- Gas to Flare
- Amine Pump Let Down and Recircs
- Aux Power Unit Valves
- Liquid Ammonia Let Downs

Oil and Gas
- Feed Gas Regulator
- Overboard Water Dump Valves
- Water Injection Systems
- Pump Min Flow Valves
- Fire Water Pump Discharge Valves and Min Flow Valves
- Methanol Injection
- Vapor Recovery Systems
- Flue Gas Expander Bypass
- First Stage Separator Level Control
SPECIAL APPLICATION GLOBE STYLE CONTROL VALVES
- General Service application
- Severe Duty application
- High turndown
- .75 - 24” Sizes
- 150 - 4500 ANSI Ratings
- Special ANSI Ratings
- Meets ASTM/ASME Standards
- Threaded, Butt/Socket Weld, Flanged Ends

STEAM CONDITIONING EQUIPMENT (DESUPERHEATERS)
- 7 Styles
- Mechanical Atomizing
- Variable Orifice
- Integral Cooling Water function available
- High turndowns
- 150 - 2500 ANSI Ratings
- Special ANSI Ratings
- Meets ASTM/ASME Standards

TRIM TYPES
- 13 types
- RAVEN™
- HUSH™
- CAV B9°
- One Stage Hush©
- Noise control
- Cavitation elimination
- Velocity & Erosion control

ACTUATORS
- Diaphragm Style, Model 700
- Diaphragm Style, Model 1000
- Manual Style 820
- Electric available
- Electro/Hydraulic available
- Piston
- Reverse acting
- Direct acting

NUCLEAR CONTROL VALVES
- Pneumatic, Motor, Manual Operators
- Metal & Resilient Seats
- Widest Selection of Trim in the Industry
- Globe, Angle, Isolation & Three Way Body Configurations
- Size Range: 3/8” - 20” class 150 - 2500
- ASME Section III “N” & “NPT” Stamp Certified

NUCLEAR HIGH PERFORMANCE BUTTERFLY AND BALL VALVES
- Bi-Directional Class VI Shut off
- Metal & Resilient Seats
- Torque Seated/Position Seated (Butterfly only)
- Pneumatic, Motor, Manual Operators
- Modulating or Isolation
- Two & Three Piece Ball Valve design
- ASME Section III “N” & “NPT” Stamp Certified

AFTERMARKET AND REFURBISHMENTS
- Reduce Outage Cycle Times
- Maximize Years/Life Cycle
- Recondition the OEM parts, while minimizing lead times and costs.

Your local contact:

SPX Flow Control
5620 West Rd.
McKean, PA 16426
Phone: (814)476-5800 Fax: (814)476-5848
E-mail: cv@spx.com

For more information about our worldwide locations, approvals, certifications, and local representatives, please visit www.spxfc.com.

SPX reserves the right to incorporate our latest design and material changes without notice or obligation.

Design features, materials of construction and dimensional data, as described in this bulletin, are provided for your information only and should not be relied upon unless confirmed in writing. Certified drawings are available upon request.